

Society for Medicinal Plant and Natural Product Research Permanent Committee on Breeding and Cultivation of Medicinal Plants

Genetic Resources, Conservation and Breeding

C. Carlen^{1,2}, J. Vouillamoz¹, C. Baroffio¹, X. Simonnet², M. Quennoz²

¹Agroscope Changins-Wädenswil ACW, Conthey, Switzerland ²Mediplant, Conthey, Switzerland

Agroscope Changins-Wädenswil ACW Research Station

Research Centre Conthey

- -35 persons
- -25 ha in Conthey
- 1 ha in Aproz
- 1 ha in Arbaz
- 2 ha in Bruson
- different labs

Agroscope Changins-Wädenswil ACW Research Station Recherche Centre Conthey

Medicinal and aromatic plants

Small fruits

Fruit-growing

Glasshouse Crops

MEDIPLANT

Research Centre for Medicinal and Aromatique Plants

tél. +41(0)27 345 35 11 fax +41(0)27 346 30 17

www.mediplant.ch mediplant@acw.admin.ch mainly projects from private organisation

supported by Agroscope ACW and the 'Canton du Valais'

6 persons

Research in medicinal and aromatic plants (Agroscope ACW / Mediplant)

Breeding new cultivars or testing cultivars	Quality
Optimising cultivation techniques and plant protection	Expertises Consulting Teaching

U

Research in medicinal and aromatic plants (Agroscope ACW / Mediplant)

xavier.simonnet@acw.admin.ch

Structure of the presentation: Breeding of MAP®

- Introduction
 - Market and cultivation of medicinal plants
 - Importance of agronomic research for the supply and quality of medicinal plants
 - Importance of conservation, characterisation, evaluation of genetic resources (biodiversity) for breeding
- Breeding examples: projects of Agroscope ACW and Mediplant:
 - Breeding for increased levels of desired compounds
 - Breeding for higher resistance
 - Breeding for better homogeneity
 - Breeding for decreasing undesired compounds
- Conclusions and Perspectives

Global Market of medicinal plants

- 422'000 flowering plants on the planet
- 21'000 (WHO, 1980) to 52'000 (FAO, 2002) species → medicinal plants;
 most of them used as traditional medicine for primary health care needs
- 2'500 species in international trade (FAO, 2002)
- ~ 200 species are cultivated (FAO, 2002)
- For companies trading medicinal plants, 60 90 % of the volume of medicinal plants are from cultivated production (Laird and Pierce, 2002)

O

Why cultivation of medicinal plants

- + continuing supply of raw material is guaranteed
- production volume and price can be agreed for longer periods
- genotypes can be standardised and improved (by breeding)
- quality standards are easy to maintain with optimal cultivation procedures and post-harvest handling
- + certification is possible (i.e. oragnic farming)
- + no risk of a decrease of biodiversity due to over-harvesting of wild plants (especially for plants with a high demand)
- it needs substantial investments before and during production
- → R & D is essential for a successful cultivation:

botany, conservation of genetic resources breeding, optimising cultivation procedures

O

Why biodiversity is important for breeding?

- The wild relatives of cultivated plants provide a reservoir of potentially important genes for crop improvement programmes.
- To efficiently use these genetic resources, it is important that biodiversity is further studied, characterised, evaluated, conserved and available for breeders.
- This will allow to find new genotypes of wild species and local/neglected varieties with key genes for important traits suitable for developing improved and new cultivars for agricultural production.
- This will also allow to promote domestication of wild species for product innovation and new bioactive compounds.

Breeding of medicinal plants

Exemplarily will be presented projects of Agroscope ACW and Mediplant:

Breeding for increased levels of desired compounds (*Artemisia annua, Thymus vulgaris*)

Breeding for higher resistance against biotic factors (*Hypericum perforatum*)

Breeding for better homogeneity (Salvia officinalis)

Breeding for decreasing undesired compounds (*Artemisia unbelliformis*)

Artemisia annua: Breeding for increased levelsor of desired compounds

Plant: Artemisia annua L. (annual wormwood; Asteraceae)

Properties: highly efficient against *Plasmodium falciparum* (pathogen of Malaria)

Drug: Artemisinin, extracted from leaves of *Artemisia annua*. It is the only source of artemisinin at the moment.

Artemisia annua: Breeding for increased levelsof desired compounds

Active compounds: Artemisinin (sesquiterpene lactone endoperoxid), is a highly effective anti-malarial compound.

It is also efficient against multidrug-resistant strains of Plasmodium falciparum. WHO officially adopted artemisinin-based combination therapies (ACTs) as the most efficient treatment against malaria

V

Artemisia annua: Breeding for increased levelsof desired compounds

Breeding aim: Cultivars with increased content of Artemisin

in the leaves.

Breeding tools:

testing available genetic resources,

floral biology,

classical breeding techniques,

in vitro techniques

Artemisia annua: Breeding for increased levels of desired compounds

Artemisia annua: Breeding for increased levels of desired compounds

Origine	Туре	Artemisinin content (%DW)	Reference	
Germany	wild	0.02	Singh <i>et al</i> ., 1988	
USA (Connecticut)	wild	0.06	Charles et al., 1990	
Argentina	wild	0.10	Acton et al., 1985	
India	cultivar	0.11	Sharma <i>et al</i> ., 1991	
China	wild	0.14	Charles et al., 1990	
USA (Dakota)	wild	0.21	Charles et al., 1990	
Spain	wild	0.24	Delabays et al., 1993	
Vietnam	wild	0.46	Wallaart et al., 1999	
Netherlands	tetraploid	0.52	Wallaart et al., 1999	
China	wild	0.60 Liu <i>et al</i> ., 1979		
China	wild	0.79 Anonymous, 1980		
Vietnam	wild	0.86	0.86 Woerdenbag <i>et al.</i> , 1994	
China	wild	1.07 Delabays <i>et al.</i> , 1993		
			Delabays, 1997;	
Switzerland	hybrid	1.38	Cultivar Artemis	

Artemisia annua: Breeding for increased levels of desired compounds

Testing of combination ability of the most interesting clones still continues (by crosspollination of two clones)

Hybrids from Mediplant

2001

Artemisia annua: Breeding for increased levels

of desired compounds

V

Artemisia annua: Breeding for increased levels & of desired compounds

Artemis

Plant: Thymus vulgaris L. (thyme)

Properties: The essential oil is used as a flavour additive, as well as in antimicrobial and antioxidative products

Gynodioecy of thyme flowers

Male sterile plant

Male fertile plants (hermaphroditic plants)

Breeding goals:

high yield in essential oil, homogeneity, winter hardiness

Breeding method:

Crossing male sterile and male fertile plants
(MS-plants x MF-plants)

Male sterile plants (MS)

Male fertile plants (MF)

MF-clone x MS-clone

Seeds on MS-clones

MF-Clone

X

MS-Clone

5 clones:

X

12 clones

56 Hybrids

Evaluation of yield, quality, seed yield

Origin of the clones:

- Wild populations in the Aosta Valley
- Breeding material from Agroscope ACW
- Old cultivar 'Deutscher Winter'

- Period: 2000 2002
- Planting date: beginning of May 2000 (plantlets)
- Planting density: 5.7 plants/m² (4 X 25 plants per hybrid)
- Fertilisation kg/ha: 60 N, 30 P₂O₅, 100 K₂O et 15 Mg
- Irrigation, if necessary
- 5 harvests: 4.9.00; 5.6.01 und 11.09.01; 18.6.02 und 24.09.02
- Organic farming
- 4 replications

'Varico 3' compared to other cultivars

Leaf yield, content and yield of essent. oil

(3 harvests and 4 replications)

Cultivar	Origin	dw-leaf yield (t/ha)	Content of essent. Oil (%)	Essent. oil yield (I / ha)
		∑ 07-08	Ø 07-08	∑ 07-08
Varico 3	Hybrid	3.9 ab	4.9 b	191 a
Varico 2	Hybrid	4.2 a	3.5 c	146 b
Dt. Winter	Population	3.3 c	2.9 d	97 c

St. John's wort: Breeding for higher resistance 😵

Plant: Hypericum perforatum (St. John's wort, Hypericacaea)

Properties: antidepressive, antiviral, vulnerary, mainly used for mild depressions, cancer treatments, ...

Drug: flower horizon

Active compounds: Hypericin, Pseudo-hypericin, hyperforin,

flavonoides

St. John's wort: Breeding for higher resistance 🕸

Breeding aim: Increasing resistance to *Colletotrichum*gloeosporioides fungus, yield, phytochemical profile
similar as the standard cultivar Topas,

Breeding tools: Comparison of different ecotypes (40, mainly from nature and some from botanical gardens)

St. John's wort: Breeding for higher resistance 💝

Comparison of different accessions on resistance to Colletotrichum gloesporiodes

St. John's wort: Breeding for higher resistance 💝

P7: Cultivar Hypervivo 7 selectes by Mediplant

St. John's wort: Breeding for higher resistance 💝

Sage: Breeding for better homogeneity

Plant: Salvia officinalis

Properties: antibiotic, antifungal, astringent, antispasmodic, estrogenic, ..., management of mild to moderate Alzheimer's disease (cholinergic binding properties)

Drug: Essential oil, leaf extracts

Active compounds: Essential oil (cineole, borneole, thujone,...);
Leaf extracts (tannic acid, oleic acid, chlorgenic acid, caffeic acid,.....)

Sage: Breeding for better homogeneity

Breeding aim: <u>Homogeneity</u>, winterfrost resistance, quality, yield Breeding tools: testing of natural populations and accessions, biology of flowers, combining male sterile clones with male fertile clones

Sage: Breeding for better homogeneity

Flower biology

Male fertile plants (MF, Hermaphrodite)

Male sterile plants (MS)

Crosses: MS X MF

■ Seeds from the male sterile plant → F1 hybrid (cultivar)

Sage: Breeding for better homogeneity

The most interesting hybrid was called Regula and is multiplied by DSP

Sage: Breeding for better homogeneity

Comparison of the variety Regula with the variety Extracta, widely used in Europe

Locations	Cultivars	Yield (t/ha)	Part of leaves (%)	Content of essential oil of	Yield of essential oil	flower trusses per linear	
		∅02-04	,	leaves (%) Ø 02-04	(I / ha) Ø 02-04	metre ∅ 03-04	
Arbaz	Regula	10,79	77 ^a	2,04	(156,0) ^a	(35,8)	
	Extrakta	9,56	71 ^b	1,74 b	102,3 ^b	77,2 ^a	
Bützberg	Regula	7,87	78 ^a	(2,05 ³)	(122,4) ^a	(12,8	
	Extrakta	7,66	73 ^b	1,78 b	91,3 ^b	51,1 a	

O

Sage: Breeding for better homogeneity

Genetic analysis by AFLP (Amplified Fragments Length Polymorphism) of the MS mother clone, the MF father clone and the F1-hybrid Regula

Plant: Artemisia umbelliformis (alpine wormwood, white genepi; Asteraceae)

Drug: Flower trusses (used in liquor, tonic properties, digestive)

Active compounds: essential oil (pinene, cineole, thujone, borneole,....), bitter compounds, flavonoides

Breeding aim: no thujone (neurotoxic effects), erect growth habitus, yield,

Breeding tools: test and analysis of different ecotypes, cross pollination of selected clones.

Genepi: Breeding for decreasing undesired

compounds

Q

Genepi: Breeding for decreasing undesired

Rey et al., 1997, RSVAH₄₆29 I.

- Selection of adapted plants, then in vitro multiplication
- ■Transplanting of these plants in the field to get the seeds for new cultivars (population cultivar)
- Cultivars: RAC 12 (without thujone, origin Mattmark)
 - RAC 10 (with thujone >60 %, origin Simplon)

Optimising cultivation procedures to get a better quality


```
What is the best
cultivar?
planting procedures?
harvesting stage?
harvesting procedures?
methods to protect the plants?
harvesting technique?
fertilisation treatments?
drying techniques?
storage conditions?
extraction procedures?
```

.

Research and development is important to answer these questions and to formulate good agricultural practices (GAP) to enhance and standardise the quality of medicinal plants

48

Conclusions

- Cultivation of medicinal plants is essential to supply the increasing global demand.
- Agronomic research plays an essential role to optimise the cultivation of medicinal plants and the quality of the raw material by efficient breeding programs
- Therefore it is very important that biodiversity and genetic resources
 (e.g. new genotypes of wild species and local/neglected varieties) is
 further characterised, evaluated, conserved and available to take the
 advantages of genetic and chemical diversity within species over wide
 geographical areas.
- For each created cultivar, the development of optimised cultivation procedures is necessary to formulate good agricultural practices (GAP) and to improve the benefit of medical plants.

Perspectives for botanical and agronomic R & D in medicinal plants

- Preservation of species and genetic diversity in-situ by a sustainable use of medicinal plants from natural habitats
- Conservation and multiplication of genetic resources ex-situ: botanical gardens, gene banks, as well as micropropagation (in vitro) are stille important to multiply and conserve endangered genotypes and interesting genotypes for breeding
- Conventional breeding prevails in MAP because it is a cheap methods and the high natural variability of most MAP species provides a good basic to achieve high breeding progress in short time.
- However gene/molecular techniques are more and more important for breeding better cultivars (e.g. molecular markers). Interest on detailed under-standing of pathways of desired compounds is increasing for the identification of the concerned genes (that can be used eventually for genetic engineering).

Perspectives for botanical and agronomic R & D in medicinal plants

- Besides the classical use of MAP, new interesting markets can be developed in the future such as cosmetics, functional foods, veterinary medicines, as well as plant protection products.
- Therefore conservation of genetic resources programmes, as well as domestication and breeding programmes need to be expanded.

U

Thank you for your attention!

Special thanks to

different private COMPANIES, different NGOs

Agroscope ACW/OFAG, Canton du Valais/HES-SO

for their financial and technical support

